Связка в математике, двухпараметрическое семейство линий на плоскости или поверхностей в пространстве, линейно зависящее от параметров. Пусть F1, F2, Р3 — функции двух переменных, из которых ни одна не является линейной комбинацией двух других. Семейство линий на плоскости, определяемых уравнением
l1F1 + l2F2 + l3F 3 = 0 (*)
при всевозможных значениях параметров l1, l2, l3 (исключая случай l1 = 0, l2 = 0, l3= 0), представляет собой С. уравнение (*) фактически зависит от двух параметров (от двух отношений l1: l2: l3); кроме того, непосредственно видно, что параметры входят в это уравнение линейно. Аналогично составляется уравнение С. поверхностей в пространстве. Три уравнения F1 = 0, F2 = 0, F3 = 0 дают три элемента С. (три линии или три поверхности), которые определяют всю С.
Обычно рассматриваются С., элементы которых сходны в каких-либо отношениях (например, С. окружностей, С. плоскостей). Иногда говорят о С. прямых в пространстве (хотя рассматривается С. в пространстве, но элементами её являются не поверхности, а линии). Впрочем, и здесь дело можно свести к С. плоскостей, т. к. попарные пересечения элементов С. плоскостей определяют множество прямых (в проективной геометрии, говоря о С., подразумевают сразу оба эти множества — и прямых, и плоскостей).