Турбулентность в атмосфере и гидросфере. Движение воздуха в атмосфере и воды в гидросфере в большинстве случаев имеет турбулентный характер (см. Турбулентность). Т. в а. и г. играет большую роль, так как именно благодаря турбулентности происходят обмен количеством движения и теплотой между атмосферой и океаном (включая, в частности, зарождение ветровых течений и волн в океане), испарение с поверхности океана и суши, вертикальный перенос тепла, влаги, солей, растворённых газов и различных загрязнений, диссипация кинетической энергии, рассеяние и флуктуации амплитуды и фазы звуковых, световых и радиоволн (включая мерцание звёзд, флуктуации радиосигналов космических аппаратов, сверхдальнее телевидение и т.п.).

  Специфическими особенностями Т. в а. и г. являются очень широкий спектр масштабов турбулентных неоднородностей (от мм до тыс. км) и существенное влияние вертикального распределения плотности среды на развитие мелкомасштабной турбулентности.

  Спектр масштабов турбулентности в атмосфере распадается на синоптическую область (макротурбулентность) с масштабами намного больше эффективной толщины атмосферы Н ~ 10 км и квазидвумерными (квазигоризонтальными) турбулентными неоднородностями и микрометеорологическую область с масштабами намного меньше Н и существенно трёхмерными неоднородностями. В промежуточной мезометеорологической области сколько-нибудь интенсивная турбулентность редка. Макротурбулентность черпает энергию из крупномасштабных неоднородностей притока тепла к атмосфере от подстилающей поверхности, а затрачивает энергию главным образом на генерацию микротурбулентности при гидродинамической неустойчивости вертикальных градиентов скорости ветра.

  Неустойчивая стратификация служит для микротурбулентности источником, а устойчивая — стоком энергии; в первом случае микротурбулентность оказывается интенсивной, во втором — слабой. Свойства микротурбулентности наиболее просты в приземном слое атмосферы толщиной в несколько десятков м, в котором вертикальные турбулентные потоки импульса t и тепла q постоянны. При условиях квазистационарности и горизонтальной однородности характеристики крупномасштабных компонент такой турбулентности определяются, кроме высоты z и скорости трения , также параметром плавучести b = g/T0 и величиной q / cpr (g — ускорение силы тяжести, cp и r — удельная теплоёмкость и плотность воздуха, T0 средняя температура). Измеренные масштабами длины , времени L / u* и температуры q / cp ru*, эти характеристики оказываются универсальными функциями безмерной высоты z / L или определяемого ею числа Ричардсона , (где u и Т— скорость ветра и температура).

  Свойства океанической микротурбулентности определяются типичным для очень устойчиво стратифицированной жидкости наличием в океане вертикальной микроструктуры — долгоживущих квазиоднородных слоев с толщинами ~ 1 м и менее, разделяемых поверхностями разрыва температуры и солёности. Турбулентность, сосредоточенная в этих слоях, слаба (не способна разрушать разделяющие слои поверхности разрыва), имеет малые числа Рейнольдса (определяемые толщинами слоев), а потому далека от универсального статистического равновесия и определяется особенностями каждого конкретного слоя (а не его глубиной).

 

  Лит.: Монин А. С., Яглом А. М., Статистическая гидромеханика, ч. 1, М., 1965, ч. 2, М., 1967; Монин А. С., Каменкович В. М., Корт В. Г., Изменчивость Мирового океана, Л., 1974; Ламли Дж.-Л., Пановский Г.-А., Структура атмосферной турбулентности, пер. с англ., М., 1966.

  А. С. Монин.

 

 

Оглавление