Тэта-функции, целые функции, отношения которых представляют эллиптические функции. Основные четыре Т.-ф. определяются следующими быстро сходящимися рядами:
q1(z) = 2q 1/4sin z — 2q 9/4 sin 3z + 2q 25/4 sin 5z +...,
q 2(z) = 2q 1/4cos z + 2q 9/4 cos 3z + 2q 25/4 cos 5z +...,
q 3(z) = 1 + 2q cos 2z + 2q 4 cos 4z + 2q 9 cos 6z +...,
q 4(z) = 1 — 2q cos 2z + 2q 4 cos 4z — 2q 9 cos 6z +..., где |q| < 1. При добавлении p к аргументу z эти функции приобретают соответственно множители —1, —1, 1, 1, a при добавлении pt, где t связано с q соотношением q = e pi t, множители —N, N, N, —N (N = q-1e –2ik). Отсюда следует, что, например, отношение J1(z)/J4(z) представляет мероморфную функцию, не изменяющуюся при добавлении к аргументу 2p или pt, то есть эллиптическую функцию с периодами 2p и pt. Обобщением указанных Т.-ф., введённых К. Якоби (обозначения Якоби несколько иные), являются Т.-ф., построенные А. Пуанкаре для представления автоморфных функций.
Лит.: Уиттекер Э.-Т., Ватсон Дж.- Н., Курс современного анализа, пер. с англ., 2 изд., ч. 2, М., 1963.