Электронная пушка, устройство для получения потоков (пучков) электронов в объёме, из которого удалён воздух (в вакууме). Электроны в Э. п. вылетают из катода и ускоряются электрическим полем (рис. 1). Испускание электронов из катода происходит главным образом в процессах термоэлектронной эмиссии, эмиссии из плазмы, автоэлектронной эмиссии (см. Туннельная эмиссия) и фотоэлектронной эмиссии, формирование заданного распределения электронного пучка на выходе из Э. п. осуществляется подбором конфигурации и величины электрического и магнитного полей и является предметом электронной оптики (см. Электронная и ионная оптика). Термин «Э. п.» применяют как к устройствам для формирования высокоинтенсивных электронных пучков (сильноточные Э. п.), так и к более простым совокупностям электродов для получения пучков малой интенсивности (используемых в клистронах, магнетронах, электроннолучевых приборах); последние часто называются электронными прожекторами. Конструкции и параметры слаботочных Э. п. весьма разнообразны. Схема одной из них приведена на рис. 2. Э. п. находят широкое применение в технике и научных исследованиях, в частности в телевизионных системах, электронных микроскопах, электроннооптических преобразователях, аппаратах для плавки и сварки металлов, возбуждения газовых лазеров и т. д. Токи электронных пучков в слаботочных Э. п. могут иметь значения в пределах от десятков мка до десятков а, а энергии электронов доходить до сотен кэв.

  В сильноточной Э. п., являющейся двухэлектродным прибором (диодом), генерируются электронные пучки с существенно большими токами — до 104107 а, энергией ускоренных электронов до 10—20 Мэв и мощностью £ 1013 вт. Обычно в сильноточной Э. п. при плотностях тока ³ 1 ка/см2 используются холодные катоды со «взрывной эмиссией». Взрывная эмиссия возникает при нагреве и взрыве микроострий на поверхности катода током автоэлектронной эмиссии (см. Туннельная эмиссия). Ионизация паров приводит к формированию у поверхности катода плотной плазмы и увеличению средней плотности тока эмиссии в 103—104 раз. Прикатодная плазма расширяется к аноду со скоростью v = (2—3)×106 см/сек и замыкает состоящий из катода и анода диод за время d/v (d — расстояние катод — анод), что ограничивает длительность тока пучка через диод временами ~ 10-8 — 10-6 сек.

  При малых токах и отсутствии разреженной плазмы между катодом и анодом движение электронов в сильноточной Э. п. с учётом релятивистских поправок подобно движению в слаботочной Э. п. Отличительная особенность Э. п. в режимах с большими токами состоит в сильном влиянии магнитного поля пучка на траектории электронов. Как показывает расчёт, при токе диода  (ка) (рис. 3, — полная энергия электронов у анода, mc2 — энергия покоя; см. Относительности теория) собственное магнитное поле потока электронов заворачивает электроны к оси этого потока и сжимает поток к центру анода. Это сжатие пучка у анода приводит к экранировке центральной области катода пространственным зарядом пучка, вследствие чего электроны испускаются главным образом кромкой катода, что хорошо видно на рис. 3. Эффект сжатия наиболее ярко проявляется, если пространств, заряд и его электрическое поле частично компенсируются ионами плазмы, заполняющей приосевую область диода или покрывающей поверхность анода. Плазма в диоде создаётся либо с помощью внешних источников, либо в результате нагрева анода электронным пучком. При этом на аноде плотность тока сфокусированного пучка достигает 106—108 а/см2, а плотность потока энергии £ 1013 вт/см2. Представление о пучке в этом случае условно, т. к. поперечная скорость электронов сравнима с продольной.

  Если на аноде есть слой плотной плазмы, то ионы ускоряются электрическим полем к катоду, а ток в диоде переносится и электронами, и ионами. Теория и расчёт, подтверждаемые экспериментами, предсказывают, что в результате взаимодействия магнитного поля с электронами их ток с увеличением R/d (в отличие от ионного) перестаёт нарастать. Это открывает возможность получения в сильноточных Э. п. ионных пучков с током ³ 106 а. Эффект подавления электронных токов на периферии диода магнитными полями, называется магнитной изоляцией, используется в вакуумных передающих линиях, соединяющих источник питания с диодом Э. п. и выдерживающих без пробоя напряжённость электрического поля £ 4×106 в/см.

  Сильноточные Э. п. используются для нагрева плазмы, коллективного ускорения заряженных частиц, получения тормозного излучения и потоков нейтронов, генерации СВЧ-колебаний и лазерного излучения, в исследованиях по физике твёрдого тела.

 

  Лит.: Алямовский И. В., Электронные пучки и электронные пушки, М., 1966; Месяц Г. А., Генерирование мощных наносекундных импульсов, М., 1974; Смирнов В. П., Получение сильноточных пучков электронов, «Приборы и техника эксперимента», 1977, в. 2.

  В. П. Смирнов.


Рис. 1. Схема электронной пушки: 1 — катод; 2 — модулятор; 3 — первый анод; 4 — второй анод; е — траектории электронов.


Рис. 3. Схема сильноточного диода: 1 — катод; 2 — слой катодной плазмы; 3 — типичная траектория электрона в диоде, имеющая спиралеобразную форму; 4 — типичная траектория иона в диоде; 5 — слой анодной плазмы; 6 — анод.


Рис. 2. Структурная схема осесимметричной электронной пушки, используемой в клистронах (показана в разрезе).

 

Оглавление